Name

Submit In Quadruplicate To:

ARM 36.22,307, 601, 605, 1003, 1004, 1011, 1013, 1103, 1222, 1240, 1301, 1306, 1309, and 1417

MONTANA BOARD OF OIL AND GAS CONSERVATION **2535 ST. JOHNS AVENUE BILLINGS, MONTANA 59102**

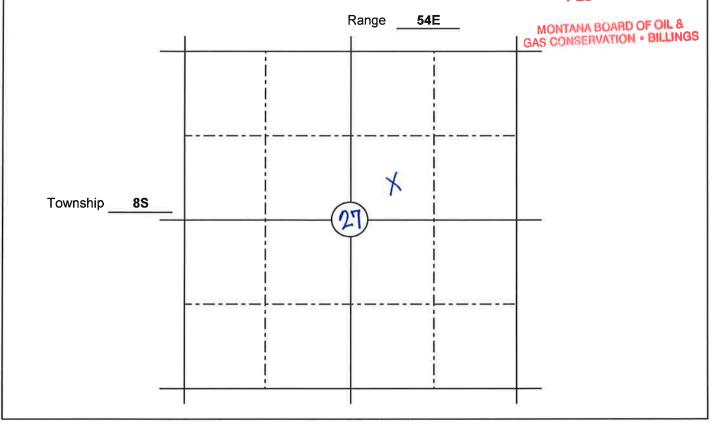
FEB 1 6 2018

Naomi Johnson - Regulatory Compliance Specialist Print Name and Title

972-673-2000

S	SUNDRY NOTICES A	ND REPO	RT OF WELLS GAS CONSERVATION • BILLING
Operator Denbury Onshore, I	LLC		Lease Name: Unit
Address 5320 Legacy Drive			Type (Private/State/Federal/Tribal/Allotted):
City Plano State	TX Zip Code 75024		Fee
Telephone 972-673-2000	_		Well Number: 27-07
Location of well (1/4-1/4 section an	d footage measurements);		Unit Agreement Name:
SWNE Sec. 27, 1980' FNL & 19	980' FEL		BCCMU Field Name or Wildcat:
			Bell Creek
			Township, Range, and Section:
API Number:	Well Type (oil, gas, injecti	on, other):	T8S-R54E, Sec. 27
25 075 21020 State County Well	Oil		County: Powder River
Indicate below with an X the nature	of this notice, report, or othe	r data;	
Notice of Intention to Change Plans Notice of Intention to Run Mechanic Notice of Intention to Stimulate or to Notice of Intention to Perforate or to Notice of Intention to Abandon Wel Notice of Intention to Pull or Alter C Notice of Intention to Change Well Supplemental Well History Other (specify) Fracture Stimulat	cal Integrity Test c Chemically Treat C Cement C asing Status	Subseque Subseque Subseque Subseque Subseque Subseque Subseque	ent Report of Mechanical Integrity Test ent Report of Stimulation or Treatment ent Report of Perforation or Cementing ent Report of Well Abandonment ent Report of Pulled or Altered Casing ent Report of Drilling Waste Disposal ent Report of Production Waste Disposal ent Report of Change in Well Status ent Report of Gas Analysis (ARM 36.22.1222)
necessary. Indicate the intended starting Denbury requests approval to fra	ng date for proposed operations on acture stimulate the subject atment report has been incli	onfiguration dia or the completion well. Pleaso uded in the p	agrams, analyses, or other information as
BOARD USE	ONLY		ation is true and correct:
Approved FEB 2 / 2018		-	5/2018 / Cally // MC
Date		Da	ate Signed (Agent)

Telephone


SUPPLEMENTAL INFORMATION

NOTE: Additional information or attachments may be required by Rule or by special request.

Plot the location of the well or site that is the subject of this notice or report.

FEB 1 6 2018

BOARD USE ONLY

CONDITIONS OF APPROVAL

The operator must comply with the following condition(s) of approval:

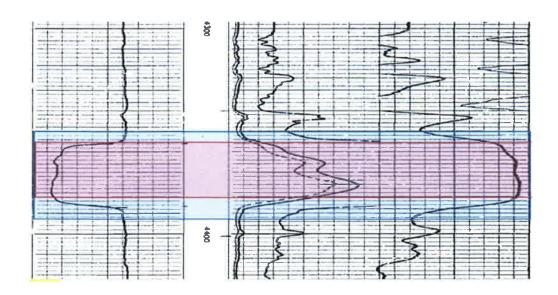
Failure to comply with the conditions of approval may void this permit.

PROCEDURE To Stimulate Well

Bell Creek Unit 27-07

1980 FNL 1980 FEL, Sec 27 – T8S - R54E API # 25075210200000

Powder River County, MONTANA
This is a FEE well


RECEIVED

FEB 1 6 2018

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

OBJECTIVE OF OPERATION:

Test production tubing to treating pressure – Perform small hydraulic fracture stimulation on the Muddy– Flow back well Release to Production

Notes about this well

- 1. 6/7/2017 Tested 2000psi w/ 8.34ppg fluid. Tested 1500psi after packer set with 10ppg.
- 2. 6/7/2017 40' of ratehole made. No sigificant fill that was cleaned out. Tubing tested 2500psi.
- 3. 6/7/2017 ran stacked log on the well. CBL/CCL/ODT/Caliper.
- 4. 1989 TA held 1000psi. circulated 4371' w/o swivel.
- 5. 1980 Prior set packer at 4204 with 4385' tag.
- 6. 1967 Drilled & Completed. Ran CBL and perf'd 4355-4382'.

Denbury 6

FEB 1 6 2018

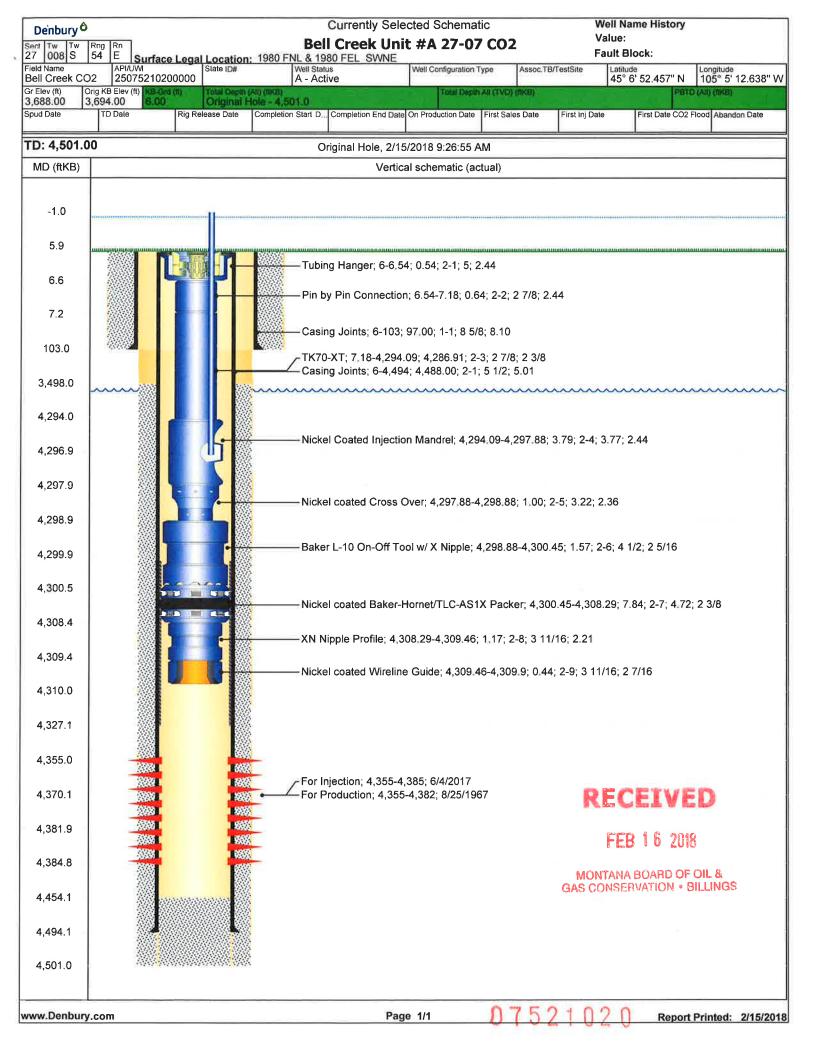
MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

- 1. NOTE: Check local Well File before beginning job.
- 2. Pre-Job: Confirm Sundry approval. Secure Wellhead, Flowline, and Electrical. Notify BLM/State as required.
- 3. MIRU SL. RIH with 1-1/4" bailer and tag bottom. Record depth. TOOH. RDMO SL.
 - a. Notify Plano if tag high for path forward. Jar for sample if high.
- 4. MIRU Hot-oiler. PT Production Casing as directed below. RDMO Hot-oiler.
 - a. Test to a maximum anticipated PCP of 1500psi for 15 min. Chart it no more than 10% pressure loss.
 - i. If casing fails contact Plano with procedure moving forward.
- 5. MIRU SL. PU PX plug. RIH & set in XN nipple below the packer. TOOH. RDMO SL.
- 6. Bleed off pressure and ensure tubing & casing are dead.
- 7. Install BPV. RD tree to adaptor flange. RU 2 10K 3" Plug Valve & TIW.
- 8. Retrieve BPV. MIRU Tubing Testers. PT tubing as directed below. RDMO tubing testers.
 - a. Test tubing to maximum anticipated treating pressure @5000# for 15 minutes. Chart it no more than 10% pressure loss. Hold 1000# on the backside (As anticipated for job).
 - i. If tubing fails contact Plano with procedure moving forward.
 - b. Bleed off casing to 0psi and tubing to SI pressure when prong was set.
- 9. MIRU SL. RIH and retrieve prong & PX plug.
- 10. PU BHP gauges. RIH and take BHP mid-perf. POOH. RDMO SL.
- 11. MIRU 400bbl upright tank. Ensure clean use hot-oiler if necessary.
 - a. Fill tank with 400bbls of BIDDLE water.
- 12. MI Flowback Tank and 1502 iron for Flowback/ Frac Operation Relief if necessary.
- 13. MIRU Hot-oiler. Roll tank to 80-100degF (depending on the Weather). RDMO Hot-oiler.
- 14. MIRU Frac Company & Equipment. (Estimated 4-8 hr job -22 minutes to pump time).
 - a. Frac Company responsible for 20,000# 16/30 sand, frac fluid additives, and all frac equipment.

Frac Additives					
Control of the contro		LOADING PER/1000 GALLONS			
Materials	U.O.M.	Fluid 1 1 910	Fluid 2 10,250	<u>Totals</u>	
WG-1SLR, Slurried Guar Gel	gal	5	5	61	
NE-1, Non Emulsifier (Nonionic)	gal	2	2	25	
BIO-2L, Liquid Biocide (THPS)	gal	0	0.2	3	
Buffer-4L, High pH (sodium hydroxide)	gal	0	0.1	2	
XLB-1, Self Buffered Borate Crosslinker	gal	0	1.5	16	
B-4LE, High pH/Low Temp. <140°F Enzyme Break	gal	0	0.3	4	
B-1, Oxidizer Breaker (AP)	gal	1	1	13	
KCL-2Sub, KCl Substitute (anionic product toleran	gal	2	2	25	

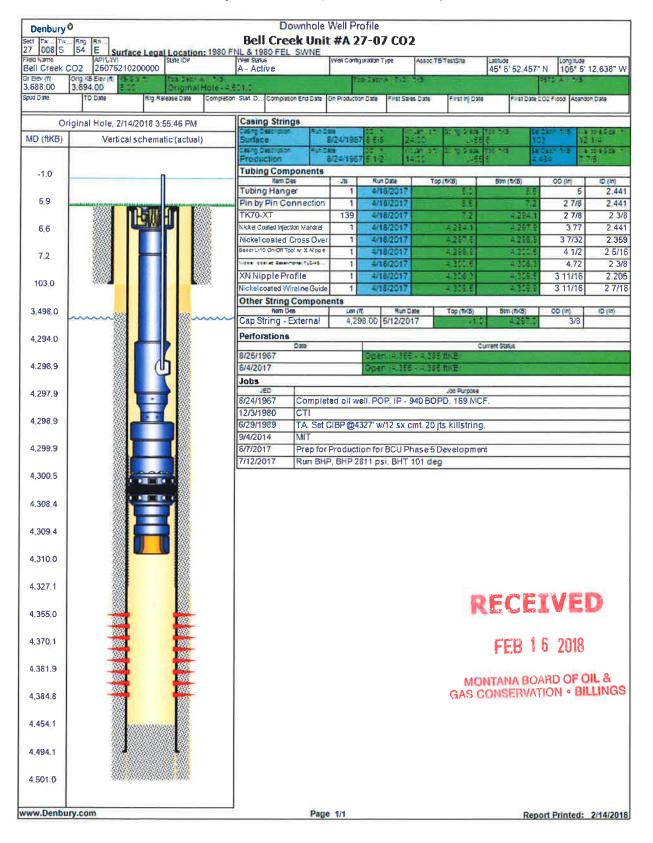
- b. 2 pressure relief valves will be installed on treating lines between pumps and wellhead to limit the line pressure to max anticipated treating pressure.
- c. Pressure the Production Casing to 800-1000psi prior to job. Hold & monitor with gauge. Set pop-off at 1400psi (100psi less than PT).
- 15. Close 3" Plug Valve. Install 3" Hydraulic valve &test to treating pressure prior to frac.
 - a. Hydraulic valve will be hooked up during frac to accumulator and serve as the remote controlled shut-in device AT THE WELL HEAD.
- 16. Perform breaker test with Biddle water from tank/X-linker & Breaker prior to job.

- a. Record, time/strength Xlinked, any visable residuals, and ensure fluid breaks prior to pumping.
- 17. Establish 8-10bpm injection rate with 20# gel for 30 bbls. Record ISIP.
 - a. Note friction pressure of 20# gel.
- 18. Pump the program recommended and attached. Hook up Frac equipment to pull off of 400bbl upright. Hook up diverter line to the flowback equipment.
 - a. Note additional friction pressure from X-linker.
 - **b.** Subject to additional pumping depending on pressures.
 - c. Prior to Flush Drop tub level and bipass tub @4ppg CONCENTRATION
 - **d.** Call flush based on densometer. 3.5 or greater if decide higher concentration.
 - i. Talk to Frac company about bypassing or dropping tub level prior to flush.
 - e. End flush 1bbl prior to perforations. Do NOT over flush. (BH concentration 4ppg).


	Frac Schedule								
STG	Proppant	Stage	Fluid Type or	Proppant Type or	Stage/lbs.	Clean	Clean	Slurry	Stage
No.	Lbs./Gal.	Gals.	Comment	Stage Description	Proppant	Rate	Bbls.	Bbls	Time.
1	0	1260	20# Linear	Pre-Pad	4	10	30	10	3
2	0	3000	20# X-Link	Pad	73	10	71	71	7.1
3	1	1500	20# X-Link	SLF 16/30 White	1,500	9.6	36	37	3.7
4	2	1500	20# X-Link	SLF 16/30 White	3,000	9.2	36	39	3.9
5	3	1500	20# X-Link	SLF 16/30 White	4,500	8.8	36	41	4.1
6	4	1500	20# X-Link	SLF 16/30 White	11,000	8.5	65	77	4.2
7	0	500	20# Linear	Flush	=	10	24.5	24.5	2.5

- 19. Record the ISIP @5, 10, & 15 minutes after pumping.
- 20. RDMO Frac Company & Equipment.
 - a. Send pump chart and other necessary data to the Plano office.
- 21. RU 1502 iron & manifold to Gas Buster. Flowback the well as directed by Plano.
 - a. Start 9ck. Maximum 1bpm. Expect sand bottoms up. Monitor sand returns for following 40 bbls. (fill 5 gal bucket 8 seconds)
 - b. Flowback 110% volume pumped. Do NOT flow back greater than 2BPM.
- 22. MIRU slickline. RIH w/ 1-1/4" bailer and tag TD. Record depth. TOOH.
 - a. Notify Plano if tag high before moving forward. Jar for sample if high.
- 23. PU PX plug. RIH and set in X nipple above packer in SA. TOOH. RD SL. Bleed tubing 0psi.
- 24. Install BPV. RD both 3" Plug Valves. NU Wellhead. Test. Remove BPV.
- 25. MIRU Hot-oiler. Pressure up tubing to SI pressure when prong was set. RDMO Hot-oiler.
- 26. RU SL. RIH and retrieve PX plug in SA. TOOH. RDMO SL.
- 27. MIRU CTU if tagged high. Clean out to PBTD. RDMO CTU.
- 28. Release to operations.

RECEIVED


FFR 1 6 2018

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

Proposed Schematic (SAME as CURRENT)

Denbury Onshore LLC Bell Creek

Broadus, MT
BCU Vertical Fracs
Sand Frac
Per Well, 2 Wells/day

RECEIVED

FEB 1 6 2018

MONTANA BOARD OF OIL & GAS CONSERVATION . BILLINGS

Prepared for: Mr. Charlie Hagan Denbury Onshore LLC 972-673-2172 charlie.hagan@denbury.com

Prepared by: Rick Boyce

QES PRESSURE PUMPING LLC

(307) 388-4331

February 8, 2018

Service Point: Gillette, WY: (307) 686-4914

Account Manager: Rick Boyce (307) 388-4331

DISCLAIMER NOTICE

This technical data is presented in good faith and QES Pressure Pumping LLC assumes no liability for recommendations or advice made concerning results to be obtained from the use of any products or service. The prices quoted are only estimates and may vary depending on equipment, materials used, hours and the work actually performed. Pricing does not include federal, state & local taxes that may apply. This quotation will remain in effect for 45 days from the date on proposal unless otherwise stated.

Writer Version 3.5!

JOB DATA

Purpose Of Treatment:

Enhance Production

Sand Frac

Job Type:

Treating Conductor:
Est. Average Pump Rate (bpm):

Est. Average Pump Rate (bpm) Est. Average. Treating PSI:

10

FEB 1 6 2018

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

Max. Pressure (psi):			
Fluid Requirements:	Fluid Description	Volume	U.O.M.
	20# Linear	1,910	Gallons
	20# Xlink	10,250	Gallons
Proppant/Divert Requirements:	Proppant/Divert Description	Volume	U.O.M.
	16/30 Northern White Sand	20,000	lb
WARLE Days	W WILL D. C. D. C. C.		
Well/Job Data:	Well/Job Data Description		

Information/Directions/Comments:

QES Pressure Pumping LLC may incorporate the daily use of Knight Fire Suppression Systems (Fire Suppressant System/Certified Firefighter/EMT Personnel) on all fracturing jobs for the safety of "ALL" personnel & equipment on the well site during the pressure pumping operation.

FLUID DESCRIPTION

Fluid 1: 20# Linear Fluid 2: 20# Xlink

RECEIVED

FEB 1 6 2018

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

		LOADING PER/1000 GALLONS									
MATERIAL'S	U.O.M.	Fluid 1 1910	Fluid 2 10:250	Fluid 3	Fluid 4	Fluid 5	Fluid 6	Fluid 7	Fluid 8	Fluid 9	Totals
WG-1SLR, Slurried Guar Gel	gal	5.00	5.00								61
NE-1, Non Emulsifier (Nonionic)	gal	2.00	2.00								25
BIO-2L, Liquid Biocide (THPS)	gal	0.20	0.20								3
Buffer-4L, High pH (sodium hydroxide)	gal		0.10								2
XLB-1, Self Buffered Borate Crosslinker	gal		1.50								16
B-4LE, High pH/Low Temp. <140°F Enzyme Break	gal		0.30								4
B-1, Oxidizer Breaker (AP)	lb	1.00	1,00								13
KCL-2Sub, KCl Substitute (anionic product tolerar	gal	2.00	2.00								25
											0
											0
											0
											0
											0
											0
											0
											0

Fluid and Storage Requirements:

FEB 1 6 2018

MONTANA BOARD OF OIL & GAS CONSERVATION . BILLINGS

Pump Schedule

Perforations:

Maximum Pressure (psi): Est. Treating Pressure (psi):

STG	Proppant	Stage	Fluid Type	Proppant Type or	Stage/lbs.	Clean Rate	Clean	Slurry Rate	Slurry	Stage
No	Lbs./Gal.	Gals.	or Comment	Stage Description	Proppant	(bpm)	Bbls.	(bpm)	Bbls.	Time
1		1,260	20# Linear	Pre-Pad		10.0	30	10	30	3.0
2		3,000	20# X-Link	Pad	4.500	10.0	71	10	71	7.1
3	2	1,500 1,500	20# X-Link 20# X-Link	SLF 16/30 White SLF 16/30 White	1,500 3,000	9.6	36 36	10 10	37 39	3.7
5	3	1,500	20# X-Link 20# X-Link	SLF 16/30 White	4,500	9.2 8.8	36	10	41	3.9 4.1
6	4.	2,750	20# X-Link 20# X-Link	SLF 16/30 White	11,000	8.5	65	10	77	7.7
7	- 4	650	20# X-Link 20# Linear	Flush	11,000	10.0	15	10	15	1.5
-		0.50	20# Efficat	Plusit		10,0	13	10	13	1,3
\vdash										
		<u> </u>								
-										
\rightarrow										
\vdash										
\vdash										
\vdash										
\vdash										_
\vdash										
-			-							
-							_			
-										
-			<u> </u>							
\vdash										
-	-									
\dashv			-							
						<u> </u>				
\neg										
						•				
		THE REAL PROPERTY.			IW CONTROL					Decision of the last of the la
	Totals	12,160 gls			20,000 lbs		290 bbl		311 bbl	0.52 hrs
				Pump Schedule Comments:						

RECEIVED

FEB 1 6 2018

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

CAS INFORMATION:

Additye	Max Louding (2000 Gal	Specific Gravity	Additive Quantity	Mass (lbs
WATER (Customer Supplied)	1,000.00	1.00	12,160	101,475
WG-ISLR, GUAR SLURRY	5.00	1.04	61	530
NE-1, NON EMULSIFIER	0.50	0.95	25	198
BIO-2L, BIOCIDE	0.20	1.00	3	25
BUFFER -4L	1,00	1.22	2	20
XLB-1, CROSSLINKER	1.00	1:36	1.6	181
B-4LE, ENZYME BREAKER	2.00	1.03	4	34
B-I, BREAKER	1.00	2,55	13	13
KCI-2SUB, KCI SUBSTITUTE	0.50	1.08	25	226
NORTHERN WHITE SAND	4,00	2.65	20,000	20,000

Total Slurry Mass (Lbs)

122,704

Name	Ingredients.	Chemical Abstract Service Number (CAS	Maximum Ingredient Concentration in Additive (% by mass)	Total Component Mass in HF Fluid (lbs)	Maximum Ingredient Concentration in HF Floid (% by mass)**
WATER (Customer Supplied)	Water	7732-18-5	100,00%	101,475	82.69918%
NORTHERN WHITE SAND	Silica Quartz	14808-60-7	100,00%	20,000	16.29939%
WG-ISLR, GUAR SLURRY	Solvent Naptha (pet.) heavy aliphatic	64742-47-8	60,00%	318	0.25937%
WO-ISEK, GUAR SEURKI	Guar Gum	9000-30-0	50,00%	265	0.21614%
NE-1, NON EMULSIFIER	Methanol	67-56-1	30,00%	60	0.04851%
KCI-2SUB, KCI SUBSTITUTE	Choline Chloride	67-48-1	70.00%	158	0.12878%
KCI-250B, KCI SOBSTITUTE	Water	7732-18-5	30,00%	68	0.05519%
BUFFER -4L	Sodium Hydroxide	1310-73-2	30,00%	6	0.00498%
BUFFER 4L	Water	7732-18-5	70,00%	14	0.01162%
	Sodium Tetraborate Decahydrate	1303-96-4	30.00%	54	0.04436%
XLB-1, CROSSLINKER	Alkyl Alcohol C10-C16	67762-41-8	30.00%	54	0.04436%
	Sodium Hydroxide	1310-73-2	30,00%	54	0.04436%
B-I, BREAKER	Ammonium persulfate	7727-54-0	100.00%	13	0.01059%
	Water	7732-18-5	90,00%	31	0.02522%
B-4LE, ENZYME BREAKER	Sodium Chloride	7647-14-5	15.00%	5	0.00420%
	Mannanase Enzymes	37288-54-3	2.00%	. 1.	0.00056%
BIO-2L, BIOCIDE	Tetrakis(hydroxymethyl) Phosphonium Sulfate	55566-30-8	20.00%	5	0.00408%
BIO-ZL, BIOCIDE	Water	7732-18-5	80.00%	20	0.01632%

100.00%

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

PRODUCT DESCRIPTION

	I KODOOT DEGOTAL TION
EG#4#1	WG-1SLR, Slurried Guar Gel
FC5451 General Information	WG-1SLR, Slurried Guar Gel is a preslurried form of a high-yield guar gum for preparing fracturing fluids. It provides exceptionally fast, "fisheye"-free hydration even in cold water.
Uses & Applications	WG-1SLR, Slurried Guar Gel can be used wherever conventional guar is used. The slurry is 4 pounds of guar per gallon of slurry. The rapid hydration allows "on the fly" mixing with fairly low-volume hydration tank in line to the blender.
Density in Sp.Gr.	1,019
Specs	Tan/yellowish slurry liquid-Water soluble
	NE-1, Non Emulsifier (Nonionic)
FC5575 General Information	NE-1 is a highly effective inexpensive nonionic nonemulsifier for oilfield acid and fracs.
Uses & Applications	NE-1 typically is used at 1 to 4 gpt.
Density in Sp.Gr.	0.898
Specs	Pale yellow liquid-Water soluble
	BIO-2L, Liquid Biocide (THPS)
FC5281 General Information	BIO-2L, Liquid is a liquid biocide based on Tetrakis (Hydroxymethal) Phosphonium Sulfate) (THPS), for use in oilfield water applications such as fracturing fluids. Used as directed, it is a highly effective and economical in controlling most sulfate -reducing and acid-producing bacteria as well as algae and fungi. Biocide, Liquid penetrates biofilms and works synergistically with chlorine- and bromine- based biocides.
Uses & Applications	BIO-2L, Liquid is best added to frac or flush water as water is transferred, Loadings as low as all gpt have been shown to be effective in relatively clean water. Dosages as high as 1 gpt may be required in badly contaminated waters.
Density in Sp.Gr.	0.95
Specs	Clear colorless liquid-Water soluble
	Buffer-4L, High pH (sodium hydroxide)
FC5528 General Information	Buffer-4L, liquid caustic is used in water base fluid to increase the pH
Uses & Applications	Buffer-4L, liquid caustic are used as increase pH in cleanup and stimulation fluids when required.
Density in Sp.Gr.	1.53
Specs	Clear liquid-Water soluble
	XLB-1, Self Buffered Borate Crosslinker
FC5500 General Information	XLB-1 is a self buffering, highly concentrated borate crosslinker for fracturing fluids. It requires no pH control additive.
Uses & Applications	Normal loadings for XLB-1 range from .6 to 1.4 gpt when used in 30 to 35 ppt guar based gel. Higher loadings may be needed in cold weather or with "on the fly" liquid gelling agents where incomplete hydration of the guar may be occurring. It can be broken with oxidizing breakers or high pH enzyme breakers.
Density in Sp.Gr.	1.303
Specs	Clear colorless liquid-Water soluble
	B-4LE, High pH/Low Temp. <140°F Enzyme Breaker
FC5478	
General Information	B-4L is a liquid enzyme breaker designed specifically for borate crosslinked fluid with pH of up to 10.
Uses & Applications Density in Sp.Gr.	B-4L is typically loaded at .2 to 2 gpt, B-4L has a shelf life of 90 days. 1.12
Specs	Light brown liquid-Water soluble
оресь	Eight of our rights in the soluble

RECEIVED

FEB 1 6 2018

Denbury Onshore LLC Bell Creek BCU Vertical Fracs Broadus, MT 8-Feb-18

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

PRODUCT DESCRIPTION

	I RODOOT DEGOTAL HON
FC5475	B-1, Oxidizer Breaker (AP)
General Information	B-1, APS is an oxidative breaker for fracturing fluids at low to moderate temperatures.
Uses & Applications	B-1, APS is typically used in fracturing treatments at loadings of 2 to 2 ppt of fluid. Fluid temperatures most appropriate for Ammonium persulfate are from around 80° F to 190° F.
Density in Sp.Gr.	1.98
Specs	White granules-Water soluble
	KCL-2Sub, KCl Substitute (anionic product tolerant)
FC5301 General Information	KCL-2Sub is a slightly cationic highly concentrated liquid potassium chloride substitute for oilfield use. Unlike many other KCI substitutes, KCL Substitute is very low in toxicity and contains no surfactants. KCL-2Sub is a 70% Choline Chloride base clay protection product. KCL-2Sub can be used with an Anionic Friction Reducer with little to no effect on the efficiency of the anionic friction reducer.
Uses & Applications	KCL-2Sub can be used in any application where the stabilization of formation clays are required, KCL Substitute typical loadings of .5 to 1 gpt will give the base fluid the equivalent clay stabilization of 2% dry potassium chloride in most formations.
Density in Sp.Gr.	1.13
Specs	Clear liquid-Water soluble
General Information	
Uses &	
Applications	
Density in Sp.Gr.	
Specs	
Divis	
General	
Information	
Uses &	
Applications	
Density in Sp.Gr.	
Specs	
General	
Information	
II 0	
Uses &	
Applications Density in Sp.Gr.	
Specs	
General	
Information	
Hace P-	
Uses &	
Applications Density in Sp.Gr.	
Specs	

MONTANA SAGE GROUSE HABITAT CONSERVATION PROGRAM

STEVE BULLOCK, GOVERNOR

1539 ELEVENTH AVENUE

- STATE OF MONTANA -

PHONE: (406) 444-0554 FAX: (406) 444-6721 PO BOX 201601 HELENA, MONTANA 59620-1601

Project 2813
Governor's Executive Orders 12-2015 and 21-2015
2813_BCU 27-07 - Fracture Stimulate
API# 25-075-21020

Naomi Johnson 5320 Legacy Drive Plano, TM, 75024

February 00, 2018

Dear Ms. Johnson,

RECEIVED

FEB 2 1 2018

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLING

The Montana Sage Grouse Habitat Conservation Program received a request for consultation and review of your project or proposed activity on February 15, 2018. Based on the information provided, all or a portion of this project is located within General Habitat for sage grouse.

Executive Orders 12-2015 and 21-2015 set forth Montana's Sage Grouse Conservation Strategy. Montana's goal is to maintain viable sage grouse populations and conserve habitat so that Montana maintains flexibility to manage our own lands, our wildlife, and our economy and a listing under the federal Endangered Species Act is not warranted in the future.

The program has completed its review, including:

Project Description:

Project Type: Energy - Oil/Gas Project Disturbance: 0.2 Acres

Construction Timeframes: February, 2018 to February, 2018, Temporary (< 1 Year) Disturbance Timeframes: February, 2018 to February, 2018, Temporary (< 1 Year)

Project Location:

Legal: Township 8 South, Range 54 East, Section 27

County: Powder River Ownership: Private

FEB 2 1 2018

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

Executive Orders 12-2015 and 21-2015 Consistency:

The project proposes to conduct well work in designated General Habitat for sage grouse.

Denbury Inc. will be using a workover rig to perform well work on an existing well with an existing wellsite. There will be no new ground disturbance. Well work will only take a few days to complete. Based on the information you provided, your project is not within two miles of an active sage grouse lek.

Recommendations:

These stipulations are designed to maintain existing levels of suitable sage grouse habitat by managing uses and activities in sage grouse habitat to ensure the maintenance of sage grouse abundance and distribution in Montana. Development should be designed and managed to maintain populations and sage grouse habitats.

Wheed management is required within General Habitat for sage grouse. Reclamation of disturbed areas must include control of noxious weeds and invasive plant species, including cheatgrass (Thomas tectorum) and Impanese brome (Bromus japonicas).

Your activities are consistent with the Montana Sage Grouse Conservation Strategy. Your proposed project or activity may need to obtain additional permits or authorization from other Montana state agencies or possibly federal agencies. They are very likely to request a copy of this consultation letter, so please retain a for your records.

Please be aware that if the location or boundaries of your proposed project or activity change in the future, or if new activities are proposed within one of the designated sage grouse habitat areas, please within a feare transport pojects/ and submit the new information.

Thanks for your interest in sage grouse and your commitment to taking the steps necessary to ensure Montana a Sage Grouse Conservation Strategy is successful.

Sincerel

Carolyn

Montana Sage Grouse Habitat Conservation Program Manager

MONTANA BOARD OF OIL AND GAS ATTACHMENT TO FORM 2 "CONDITIONS OF APPROVAL"

A. Field Inspector must be notified at least **24 hours** in advance of the start of fracture stimulation operation.

B. 36.22.1106 SAFETY AND WELL CONTROL REQUIREMENTS – HYDRAULIC FRACTURING

- (1) New and existing wells which will be stimulated by hydraulic fracturing must demonstrate suitable and safe mechanical configuration for the stimulation treatment proposed.
- (2) Prior to initiation of fracture stimulation, the operator must evaluate the well. If the operator proposes hydraulic fracturing through production casing or through intermediate casing, the casing must be tested to the maximum anticipated treating pressure. If the casing fails the pressure test it must be repaired or the operator must use a temporary casing string (fracturing string).
 - (a) If the operator proposes hydraulic fracturing though a fracturing string, it must be stung into a liner or run on a packer set not less than 100 feet below the cement top of the production or intermediate casing and must be tested to not less than maximum anticipated treating pressure minus the annulus pressure applied between the fracturing string and the production or immediate casing.
- (3) A casing pressure test will be considered successful if the pressure applied has been held for 30 minutes with no more than ten percent pressure loss.
- (4) A pressure relief valve(s) must be installed on the treating lines between pumps and wellhead to limit the line pressure to the test pressure determined above; the well must be equipped with a remotely controlled shut-in device unless waived by the board administrator should the factual situation warrant.
- (5) The surface casing valve must remain open while hydraulic fracturing operations are in progress; the annular space between the fracturing string and the intermediate or production casing must be monitored and may be pressurized to a pressure not to exceed the pressure rating of the lowest rated component that would be exposed to pressure should the fracturing string fail.

History: 82-11-111, MCA; IMP, 82-11-111, MCA; NEW, 2011 MAR p. 1686, Eff. 8/26/11.

C. <u>36.22.1010</u> WORK-OVER, RECOMPLETION, WELL STIMULATION – NOTICE AND APPROVAL

(1) Within 30 days following completion of the well work, a subsequent report of the actual work performed must be submitted on From No. 2.